铅酸蓄电池_蓄电池生产厂家提高锂电池正极极片的压实密度
时间:2019-05-25 22:45:08 阅读:1517
图1 极片轧制生产线示意图
1般来说,在材料允许的压实范围内,极片压实密度越大,电池的容量就能够做的越高,所以压实密度也被看做材料能量密度的参考指标之1。但是1味的寻求高压实,不但替身不了电池的比容量,还会严重降落电池比容量和循环性能。
压实密度越大,材料颗粒之间的挤压程度会越大,极片的孔隙度就会越小,极片的吸收电解液的性能就会越差,电解液越难以浸润,那么直接的后果就的材料的比容量发挥较低,电池的保液能力较差,电池循环进程中极化就大,衰减就会较大,内阻增加也特别明显。因此合适的正极压实密度可以增大电池的放电容量,减小内阻,减小极化损失,延长电池的循环寿命,提高锂离子电池的利用率。在压实密度过大或太小时,不利于锂离子的嵌入嵌出。那么影响正极极片压实密度的压实密度有哪些呢?
影响正极极片压实密度的主要因素主要有以下4点:
①材料真密度②材料形貌③材料粒度散布④极片工艺。
目前几种商业厂家的正极材料的真密度和目前所能到达的压实密度见表(表中所选3元材料为NCM111),可以看出,几种材料的真密度:钴酸锂>3元材料>锰酸锂>磷酸铁锂,这和压实密度的规律1致。需要指出的是,不同组分3元材料的真密度随组分的变化而变化。
几种商业正极材料的真密度和压实密度范围
材料形貌
3元材料和钴酸锂的真密度差别其实不大,从上表可以看出,NCM111和钴酸锂的真密度只差0.3g·cm⑶,压实密度却比钴酸锂低0.5g·cm⑶,乃至更高,导致这个结果的缘由很多,但最主要的缘由是钴酸锂和3元材料的形貌差别。
目前商业化的钴酸锂是1次颗粒,单晶很大,3元材料则为细小单晶的2次团圆体,如图所示。从图中可看出,几百nm的1次颗粒团圆成的3元材料2次球,本身就有很多空隙;而制备成极片后,球和球之间也会有大量的空隙。以上缘由使3元材料的压实密度进1步降落。
钴酸锂和3元材料SEM图
等径球在堆积时,球体和球体之间会有大量的空隙,若没有合适的小粒径球来弥补这些空隙,堆积密度就会很低。所以合适的粒度散布能提高材料的压实密度,而不公道的粒度散布则造成压实密度显著降落。
极片工艺
极片的面密度,黏结剂和导电剂的用量都会影响压实密度。常见导电剂和黏结剂的真密度见如表。从表中可以看出。
常见导电剂和黏结剂的真密度
材料的真密度对压实密度的影响是没法改变的,但从压实密度和真密度的对比中可以看出,3元材料的压实密度还有很大的提升空间。
目条件高压实密度的方法主要从材料形貌、材料粒度散布、极片工艺3方面入手。例如将3元材料的形貌制备成和钴酸锂类似的大单晶;优化3元材料粒度散布;极片制作时使用导电性好的导电剂以降落导电剂用量,调浆进程高速分散,使导电剂和黏结剂均匀分散等等。
下面是从优化3元材料形貌和粒度方面来提升3元材料压实密度的实例。
常见几种3元材料的形貌及其极片(辊压后)的SEM图如图所示。其中(a)、(c)、(e)为3种不同形貌的3元材料的SEM图,放大倍数相同。(b)、(d)、(f)分别为(a)、(c)、(e)的辊压后极片低倍SEM图。
(a)所示是最多见的3元材料形貌,即小单晶的2次团圆体,其辊压后的极片SEM图如(b)所示,2次颗粒之间有较大空隙,且部分2次颗粒已被压碎,部分没有接触到黏结剂的小单晶已脱落;(c)的形貌为1次单晶3元材料,但比(a)的单晶稍大1些,从其对应极片(d)可以看出,单晶颗粒之间有少量空隙,由于不存在2次颗粒破碎的问题,所以只要黏结剂分散均匀,便不存在单晶从极片脱落的问题;(e)虽然也是2次团圆体,但是单晶很大,单晶和单晶之间接触其实不是很紧密,从其对应极片(f)可以看出,颗粒和颗粒之间的空隙很少,如果使用高速混合机来制备浆料,效果会更好。
图中(a)、(c)、(e)3种形貌的材料对应的压实密度结果对应(g)中的a、c、e。从图中可以看出,(a)形貌的材料压实密度最低,但和(c)的压实密度相差不多,(e)的压实密度比(a)和(c)的高很多,已到达3.9g·cm⑶。
不同形貌3元材料及其极片SEM图、压实密度对比
D50接近的材料,若D10、D90、Dmin、Dmax有差别,也会造成压实密度不同。粒度散布太窄或粒度散布太宽都会使材料压实密度降落。对粒度散布的影响,有的电池厂家会对正极材料生产商提出要求,而有的电池厂家则通过混合不同粒度散布的产品来到达提高压实密度的目的,如图所示。
不同粒度散布的正极材料极片SEM图
造成3元材料极片过压的缘由有两种,1种是电池厂家为了寻求电池的高能量密度导致极片过压,例·如将压实密度只有3.6g·cm–3左右的3元材料压至3.7g·cm–3乃至更高;另外1种是材料厂家制程控制不严格,使不同批次3元材料的压实密度不1致,电池厂家未分析材料的具体情况,依照旧规工艺参数制备极片时将极片过压。
过压后极片的SEM图
极片过压会造成电池容量降落,循环恶化,内阻增加等问题。首先,极片过压会使球形3元材料大面积破碎,新产生的表面有很多脱离了2次球的1次小颗粒,它们要么由于没有接触到PVDF而从极片上掉落,要么由于没有接触到导电剂而使极片导电性能局部恶化。新表面的产生也使比表面增大,与电解液的接触面增大,副反应增加,从而造成电池性能降落,如电池气胀、循环衰减等。过压还会造成铝箔变形,极片脆片,容易折断,电池内阻增加。
另外,过压的极片中,材料颗粒之间的挤压程度过大,造成极片孔隙率低,极片吸收电解液的量也会降落,电解液难以渗透到极片内部,直接的后果就是材料的比容量发挥变差。保液能力差的电池,循环进程中极化很大,衰减很快,内阻增加明显。
极片是否是过压可以通过视察极片是否是脆片、做电镜查看材料是否是被破碎、估算极片孔隙率等方法来判断。其中极片孔隙率是判断极片吸液量、吸液速率的1项重要指标,对电池性能产生直接影响。
极片孔隙率是指极片辊压后内部孔隙的体积占辊压后极片整体积的百分率。极片孔隙率太低会降落电解液量对极片浸润速率,影响电池性能发挥,太高会降落电池能量密度,浪费有效空间。不能为了寻求能量密度而过度提高压实密度。孔隙率的测试可以采取压汞法、氮吸附、吸液法、估算法等,压汞法为常常使用方法。吸液法具体操作步骤以下:裁取适当极片,并计量所述极片的质量m;计量所述极片的体积V;将所述极片放置到容器中,所述容器内设置有电解液或其他溶剂(溶剂密度为ρ),将所述极片完全浸泡,并浸泡1定时间;取出所述极片,放置于滤纸上,吸拭至恒重,计量所述极片的质量m1;根据公式ε=(m1–m)/ρV×100%,计算极片的孔隙率ε。估算法较为简单,根据材料的真密度与极片压实密度的差值可以估算极片的孔隙率。极片孔隙率计算方程式以下:
极片孔隙率(%)=(混合物真密度–极片压实密度)/混合物真密度×100%
下表给出了3元材料和钴酸锂在不同压实密度下的孔隙率,数据由上式计算得出。下表的计算基础为:3元极片中包括95%的3元材料,3%导电剂,2%黏结剂(均为质量分数),3元材料的真密度为4.8g·cm–3,导电剂的密度为1.9g·cm–3左右,黏结剂的密度为1.78g·cm–3,那么混合物的真密度约为4.65g·cm–3。钴酸锂极片中包括95%的钴酸锂,3%导电剂,2%黏结剂,LiCoO2的真密度为5.1g·cm–3,导电剂的密度为1.9g·cm–3左右,黏结剂的密度为1.78g·cm–3,那么混合物的真密度约为4.94g·cm–3。
3元材料和钴酸锂在不同压实密度下的孔隙率典型值
广州市天畅科技有限公司是从事生产和开发阀控式密封铅酸蓄电池的专业厂家之1。公司总投资超过500万元人民币,生产范围为80万KVAH/年,自主设计、开发,生产从0.8AH⑶000AH的阀控式密封铅酸蓄电池。公司具有雄厚的技术气力,各环节均实行微电脑控制,可为客户量身定做各种规格的铅酸蓄电池。天畅电源各项性能已到达或超过IEC、JIS标准,具有容量高、体积小、重量轻、寿命长等优点,产品广泛的利用于通讯,电力操作系统,不中断电源(USP),应急电源(EPS),太阳能发电系统,电动玩具等领域。公司通过了中国检验认证团体ISO9001质量体系认证,电池产品前后通过了美国UL认证、欧盟的CE认证,和中国铁道部、电力部、信息产业部的检验,并获得了国家信息产业部的通讯设备入网许可证等。铅酸蓄电池供应商-天畅科技有限公司业务范围:12V铅酸蓄电池,找铅酸蓄电池厂家,了解铅酸蓄电池价格请联系4001⑻6⑻9⑻6,业务覆盖广州、上海、深圳、宁波、天津、佛山、惠州、东莞、温州、台州等地区,欢迎来电咨询。